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DOMAIN DECOMPOSITION AND LOAD BALANCING 

IN THE AMTRAN NEUTRON TRANSPORT CODE 
 

John Compton and Christopher Clouse 
Lawrence Livermore National Laboratory 

7000 East Avenue, Livermore, California, U.S.A. 
 
Abstract. Effective spatial domain decomposition for discrete ordinate (Sn) neutron transport 
calculations has been critical for exploiting massively parallel architectures typified by the ASCI 
White computer at Lawrence Livermore National Laboratory. A combination of geometrical and 
computational constraints has posed a unique challenge as problems have been scaled up to several 
thousand processors. Carefully scripted decomposition and corresponding execution algorithms 
have been developed to handle a range of geometrical and hardware configurations. 

 
1. Introduction 
 
The AMTRAN code has been in development at Lawrence Livermore National 
Laboratory  since 1995 to solve two- and three-dimensional deterministic neutron 
transport problems on a range of platforms from serial to massively parallel. When the 
White computer was delivered to Livermore several years ago as part of the U.S. 
Department of Energy’s Advanced Simulation and Computing Program [1], there was a 
concerted effort to adapt various physics codes to exploit its thousands of parallel 
processors and its threaded, message-passing software environment [2]. AMTRAN, in 
particular, has been able to exploit parallelism in several ways, but spatial domain 
decomposition has been the most challenging of these, and ultimately the key to the 
successful and efficient scaling of problems up to thousands of processors. 
 
At the time it began development in 1995, AMTRAN was unique in its application of  
adaptive mesh refinement technology (AMR) to the solution of the neutron transport 
equation, although other efforts began appearing in conference proceedings shortly 
thereafter [3][4].  Two basic methodologies have developed concerning the type of AMR 
used:  zone-based (or tree-based) AMR and block-based (or patch-based) AMR [5].  In 
zone-based AMR, refinement can occur zone by zone, giving greater flexibility in 
capturing interfaces and gradients with finer zoning, but it does not lend itself to large 
scale spatial parallelism and can be less cache friendly because of the irregular data 
layout (see [6]).  AMTRAN uses a block based AMR, which can result in more total 
zones than a zone based AMR scheme, but is better suited for large-scale parallelism.  
AMTRAN blocks are rectangles in 2D, or hexahedral boxes in 3D.  Zoning changes are 
confined to the interfaces between blocks; thus, the zoning within a block is uniform and 
can be very computationally efficient. Examples of some zoning rules for AMTRAN are 
illustrated in Figs. 1 and 2. Despite the block AMR structure of AMTRAN, though, the 
downwind dependency of the Sn directional sweeps still presents a significant challenge 
in obtaining good spatial parallel efficiency.   
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   Block boundary 

 
 
 
 
 
 
 

 Figure 1. Block boundaries must line     Figure 2. Zoning changes can be  
          up on coarsest grid lines           1→2n , where n is arbitrary 

 
Here we will touch only superficially on those aspects of deterministic neutron transport 
which have an impact on considerations of computational parallelism and spatial domain 
decomposition. AMTRAN solves the time-independent transport equation (Eq.1 below), 
where m

gΨ is the angular flux for energy group g, and angle m.   

)(ψσ Sm
gtot

m
g =Ψ+Ψ∇•Ω

��

 (1) 

The total cross section is represented by totσ , and )(ψS is the source term representing 

contributions from other angles and energy groups through scattering as well as fission 
sources.  )(ψS is typically only a function of the scalar flux, defined as a weighted sum of 
the angular fluxes, and its moments.  The transport problem is computed on a Cartesian 
finite-element grid. It consists of one or more uniform blocks.  The zoning in each block 
is determined by the properties of the physical system being modeled (in particular, to an 
approximation of the local mean free path of the neutrons through the medium). The 
neutron transport equations are then solved iteratively until the degree of convergence 
specified by the user is reached. That is the broadest explanation possible to describe the 
essence of the method. Two immediate sources of parallelism lie in the fact that (1) the 
time-independent transport equation (Eq. 1) is solved using a set of coupled single-energy 
group transport equations, each of which can be solved in parallel, subject to 
synchronization points where the coupling terms are calculated, and (2) that the transport 
equation is further discretized into angles, each of which may likewise be computed 
independently.  In our implementation the energy groups (typically 6 to 48) are 
distributed among the processors, and the angles are distributed among the threads (each 
of which is here supported by a separate processor sharing a common memory space). 
These two strategies permit a degree of parallelism equal to the number of energy groups 
multiplied by the number of computational threads. For practical reasons, threading is 
limited to the number of angles per octant, or quadrant in 2D (typically 3 to 16), and also 
by the hardware (typically 2 to 16 processors on a shared memory node).  Any further 
parallelism to be achieved beyond this point requires spatial domain decomposition, and 
that leads us into the heart of our discussion. 
 
As is typically done in cases of domain decomposition, computation proceeds in parallel 
for each region while being punctuated by occasional exchanges of information among 
the processors. In AMTRAN’s case, each iteration consists of sub-iterations separated by 
a computational barrier and exchange of messages among the processors. Exchange is 
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necessary only between pairs of processors which share a common border corresponding 
to the physical space being modeled. In particular, the messages consist of information 
describing the physical variables being computed in each region. Since the calculation is 
relatively static from one iteration to the next, the size and content of the messages is 
predetermined by the spatial domain decomposition performed initially. However, as we 
shall see, we may permit the domain boundaries to shift dynamically between iterations if 
load imbalances are detected during the computation.  
 
2. Basic Definitions 
 
At this point we need to introduce some definitions that will be used throughout the 
remainder of the discussion. We have already used the term “domain”  in the preceding 
paragraphs. To be more precise, a domain consists of one or more contiguous blocks or 
grids which fill a space corresponding to a rectangle (in two dimensions) or hexahedral 
box (in three dimensions), that is, a subset of the original problem space. In Fig. 3 we 
have a very simplistic example of four domains, where solid lines denote domain 
boundaries, thick dashed lines denote grid boundaries within domains, and thin dashed 
lines separate individual zones within a grid. In this example domain 1 contains the single 
grid A, domain 2 contains grid B, domain 3 contains the three grids C, D and E, and 
domain 4 contains grids F and G. (Typically grids contain hundreds or thousands of 
zones.) 
 
  
                                 A       B 
 
            
                    
 
 

           C   D       F           G 
 
 
                               E 
 
 
 

  Figure 3. Example of four domains with seven grids 
 
In our terminology a “domain master”  is a collection of one or more domains that are 
assigned to a given processor. In addition, if a master contains more than one domain, 
then we speak of this as an example of “domain overloading.”  These domains may or 
may not be contiguous, so that a domain master may represent space physically 
distributed throughout the problem (namely, as a collection of rectangles or hexahedral 
boxes). Thus domains are individually physically coherent (in terms of the object being 
modeled), whereas master domains are logically coherent. The only physical coherence 
that the latter need possess is the fact that they reside in adjacent computer memory. 

←2 
(B) 

←4 
(F,G) 

1→ 
(A) 

3→ 
(C,D,E) 
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Returning to the example of Fig. 3, we could place domains 1 and 4 under a single 
master, and leave domains 2 and 3 each under a separate master. 
 
Note again that a domain corresponds purely to a single physical space. This means that 
even though each domain is replicated across multiple processors (each corresponding to 
one or more separate energy groups), it is never split between processors. In summary, 
sets of processors are partitioned among domain masters and, within a domain master set, 
processors are partitioned by energy group. Each member of the set models the same 
physical space and therefore behaves quite similarly in terms of the computations it 
performs and the structure of the messages it sends and receives. The term “master”  
arises from the fact that one designated processor performs certain collection and 
messaging functions both within the set (such as with all-reduce functions) and then later 
with the other sets. We can use the example in Fig. 3 to illustrate how domains, grids, and 
energy groups could be allocated among processors. Let us say that there are four energy 
groups (a)-(d), with two each assigned to a processor. Table 1 gives the assignments 
assuming, as we did above, that domains 1 and 4 belong to a single master. 
 
 

Processor Master Domains Grids Energy 
groups 

1 1,4 A,F,G a,b 
2 

1 
1,4 A,F,G c,d  

3 2 B a,b 
4 

2 
2 B c,d 

5 3 C,D,E a,b 
6 

3 
3 C,D,E c,d 

 

Table 1. Example of domain-to-processor assignment 
 
A final bit of terminology is crucial to our discussion and needs special attention. This 
concerns the discretized angles mentioned above and the order of computations. Eq. 1 is 
solved through “source iteration”  in which the RHS source term is evaluated using “old”  
values of the fluxes; usually those from the previous iteration.  The streaming term on the 
LHS is then solved by sweeping through the mesh in the direction of neutron flow, given 
by the direction of angle m.  In two dimensions the sweep angles can be assigned to one 
of four groups based upon the direction of the sweep from one of the four corners of the 
problem to the corresponding opposite corner (that is, lower left to upper right, lower 
right to upper left, upper left to lower right, or upper right to lower left). Each one of 
these sweeps is independent of the others and so they can be done in parallel. However, 
within a single sweep, all the grids must be swept with certain dependency rules that 
govern the sequence of processing of grids in going from the grid at one corner and 
ending with the grid in the opposite corner. We will use the sweep direction from lower 
left to upper right to illustrate the order of computation between these two extremes. The 
basic rule is that each boundary on the bottom or left of a domain must either be an 
exterior boundary, or else be adjacent only to domains that have already been swept. All 
four sets of sweep dependencies corresponding to the example of Fig. 3 are given in Fig. 



 5 

4. It should be noted from the diagrams that dependencies for sweeps (a) and (d), which 
proceed in opposite directions, are in fact inverses of one another, which can be seen by 
reversing the direction of the arrows. The same holds for cases (b) and (c) and illustrates 
that dependencies for sweeps in opposite directions are always inverses of one another. 
 

 
        A         B     
                  B       A     
                  G 
        C                          F 
                  D              D     
         E                         E 
                         F          G   C         

         (a) upper left to lower right                          (b) upper right to lower left 
 

                         B    A 
    G               B 
   A      
         F    C 
        D              D 
         E    E 
             C              F           G 
         (c) lower left to upper right                          (d) lower right to upper left 

    Figure 4. Example of sweep dependencies for seven grids in four domains 
 
In three dimensions we have the analogous situation with regard to sweeps, except that 
all angles fall into one of eight octants to begin their sweep, starting from the outermost 
corner of the octant and ending in the opposite corner of the problem. Now in order for a 
domain to be swept (i.e., the upwind sides) it must have the three sides facing the sweep 
corner either lying on one of the external boundary planes of the problem or else adjacent 
only to domains previously swept from the same direction. Examples below will illustrate 
these dependency rules. 
 
3. Motivation by Example for the Decomposition Method  
 
We now turn to the problem of how sweeps are actually performed on each processor 
once we have partitioned the problem among domains, assigned these to masters, and 
performed adaptive mesh refinement to generate the grids on which the computation will 
be performed. This will illustrate how critically the computational process depends on 
both the initial partitioning of the problem, and on how we choose among the various 
possible ways of scheduling the potentially parallel subtasks assigned to a given 
processor. Later we will give solutions that address all these concerns.  
 
Let us use our previous example from Fig. 3, but unlike the case of Table 1, each domain 
will have a separate master, so that there will be eight processors in total instead of six. 
(This assignment to masters has no effect on the dependency diagrams of Fig. 4.) We will 
also assume that the total work to be performed in each domain is equal, that is, that they 
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are perfectly load balanced in terms the amount of computation which they must perform. 
A simple strategy is for each processor to perform all sweeps possible for a given sub-
iteration, then exchange messages as necessary, and proceed to the next sub-iteration 
until all sweeps have been performed in all directions on all processors. (Recall that 
messaging must occur in order to pass information across grid boundaries.)  
 
Referring to the dependency diagrams of Fig. 4, we see that on the first sub-iteration grid 
A can be swept in domain 1 from the upper left, grid B in domain 2 from the upper right, 
grids C, then E, then D in domain 3 from the lower left, and finally grids G and then F in 
domain 4 from the lower right. At this point nothing else can be done until the processors 
have exchanged messages. The second sub-iteration is not quite so straightforward. Grid 
A in domain 1 can now be swept both from the lower left and from the upper right. 
However, grid B in domain 2 can be swept only from the upper left. (It cannot be swept 
from the lower right because grid D has not yet been swept in that direction.) Likewise, 
only grid C in domain 3 can be swept from the upper left, whereas E, then D, and then C 
can all be swept from the lower right. In domain 4, grid G and then F can be swept from 
the upper right, and in the opposite order from the lower left. These and the remaining 
sub-iterations giving the complete set of sweeps for a single iteration are listed in Table 2. 
We have assigned arbitrary time units to each grid so that the total for each domain is one 
unit. 
 

Processors 
and Domains→ 

Processors 1 and 2 
Domain 1 

Processors 3 and 4 
Domain 2 

Processors 5 and 6 
Domain 3 

Processors 7 and 8 
Domain 4 

Grid  Sweep Time Grid Sweep Time Grid Sweep Time Grid Sweep Time 
Sub-iteration     

C .25 G .50 

E .25 F 
lr→ul 

.50 

 
1 

 
A 

 
ul→lr 

 
1.00 

 
B 

 
ur→ll 

 
1.00 

D 

 
 ll→ur 

.50  
C ul→lr .25 F .50 

A ur→ll 1.00 
E .25 G 

ll→ur 
.50 

D .50 G .50 

 

2 

A  ll→ur 1.00 

 

B 

 

ul→lr 

 

1.00 

C 

 
lr→ul 

.25 F 
ur→ll 

.50 
D .50 

B lr→ul 1.00 
E 

  ur→ll 
.25 

D .50 

 

3 

 

(idle) 
 B   ll→ur 1.00 

E 
ul→lr 

.25 

 

(idle) 

F .50 
4 A lr→ul 1.00 (idle) C   ur→ll .25 

G 
ul→lr 

.50 
Note: ul = upper left, ur = upper right, ll = lower left, lr = lower right 

Table 2. Order of computations for “do everything immediately”  strategy 
 

It is clear from a glance at Table 2 that the strategy of doing all computation possible on 
every sub-iteration is far from optimal. First we see that different processors do 
comparable work only in the first sub-iteration. After that we find great asymmetry and 
idled processors. In order to quantify this imbalance we can take the maximum time for 
any processor on a sub-iteration as the time required to complete that sub-iteration across 
all processors (at which point they exchange messages). What we see from the table is 
that the four sub-iterations take (1, 2, 2, 1) time units, respectively. This gives an overall 
time of 6 units (where we ignore communication time among the processors). Let us now 
take another approach and show how we can obtain far different efficiencies by a 
different scheduling of computations for the same problem. Table 3 gives the result. 
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Processors 

and Domains→ 
Processors 1 and 2 

Domain 1 
Processors 3 and 4 

Domain 2 
Processors 5 and 6 

Domain 3 
Processors 7 and 8 

Domain 4 

Grid  Sweep Time Grid Sweep Time Grid Sweep Time Grid Sweep Time 
Sub-iteration     

C .25 G .50 

E .25 F 
lr→ul 

.50 

 
1 

 
A 

 
ul→lr 

 
1.00 

 
B 

 
ur→ll 

 
1.00 

D 

 
 ll→ur 

.50  
E .25 F .50 
D .50 G 

ll→ur 
.50 

 
2 

 
A 

 
ur→ll  

 
1.00 

 
B 

 
ul→lr 

 
1.00 

C 

 
lr→ul 

.25  
C .25  G .50 
D .50  F 

ur→ll 
.50 

 
3 

 
A 

 
ll→ur 

  
  1.00 

 
B 

 
lr→ul 

 
1.00 

E 

 
ul→lr 

.25  
D .50 F .50 
E .25 G 

ul→lr 
.50 

 
4 

 
A 

 
lr→ul 

   
   1.00 

 
B 

  
ll→ur 

 
1.00 

C 

   
ur→ll 

.25  
Note: ul = upper left, ur = upper right, ll = lower left, lr = lower right 

Table 3. Order of computations for optimized strategy 

Now we find a completely different situation in comparison with Table 2. We see in 
particular that each processor does one unit of work on each sub-iteration. Thus the 
overall time has been reduced from 6 units to 4 for the complete iteration, a savings of 
50%. Furthermore we see that all the grids of a domain are swept in each sub-iteration, a 
situation that does not always hold in Table 2. This was possible because (1) we had 
precisely four domains, (2) the space was partitioned equally among the domains in 
advance, and (3) there existed dependency relationships among the domains that 
permitted this unique distribution of effort among the sub-iterations. Note that by 
sweeping all the grids in a domain in only one direction per sub-iteration, we need not be 
concerned about the internal structure of the domain, but can treat each domain as 
essentially one super-grid. Then our precedence rules (such as those illustrated in Fig. 4) 
become greatly simplified. (There is a practical consideration here as well, in that we 
must perform the domain decomposition before the stage of adaptive mesh refinement is 
begun. This means that we do not know where the grid boundaries will lie at the time of 
the decomposition. Thus we wish to avoid coupling the internal grid structure of the 
domains to our decomposition strategy.) 

The approach described above forms one of the cornerstones of AMTRAN’s domain 
decomposition strategy, which covers not only the simplest possible case examined in the 
preceding paragraphs, but up to 512 domains in three dimensions. In order to accomplish 
this task AMTRAN internally maintains tables which drive the domain decomposition 
procedure on problem initialization, and additional corresponding tables of scripts for 
deciding which angles to sweep on each sub-iteration as well. Each handles a fixed 
number of domains (as requested by the code user) in either two or three dimensions. 
This strict regime reduces the number of possible cases that we need to analyze and 
guarantees uniformity of behavior within the code.  

4. Outline of the Decomposition Algorithm 

We have now provided the motivation for our spatial decomposition strategy, which we 
now give in greater detail and generality. We have found it useful so far to support 4, 8, 
or 16 domains in two dimensions, and 8, 16, 32, 64, 128, 256, or 512 domains in three. 
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The reason that we support only powers of two in this way is that they permit the most 
efficient exploitation of the parallel computational environment available to us. Our 
partition algorithm is simple and rigid. We make a fixed number of binary partitions 
along one axis, then for each subdivided region we make binary partitions along a second 
axis, and then in the case of three dimensions along the remaining axis. A weighting 
scheme that estimates the amount of work to be performed in each part of the problem is 
the driver behind the initial set of partitions. (As stated earlier, we can later rebalance the 
problem dynamically stepwise after each partition in case the initial approximation is not 
adequate in terms of load balance.) The choice of which Cartesian axis is used in each set 
of partitions depends upon the presence or absence of symmetry planes along each axis 
and is beyond the scope of this discussion. Table 4 gives the binary decomposition 
specifications that AMTRAN uses for each configuration of domains. 
 

Number of 
Dimensions 

Number of 
Domains 

Number of Regions Partitioned along 
Axis 1            Axis 2          Axis 3 

2 4 2 2  
2 8 2 4  
2 16 4 4  
3 8 2 2 2 
3 16 2 2 4 
3 32 2 4 4 
3 64 4 4 4 
3 128 8 4 4 
3 256 8 8 4 
3 512 8 8 8 

Table 4. Order and degree of partitioning according to number of domains 

With the binary partition scheme above we can now name our domains by their 
coordinates along each partition axis, and dispense with the individual numbers used 
earlier. By way of illustration, the sample problem of Fig. 3 was partitioned first along 
the y-axis into what will become domains 1 and 2 on top and domains 3 and 4 on the 
bottom. Then we separately partition the upper domain into 1 and 2 and the lower into 3 
and 4. So in the new domain coordinate numbering system domain 1 becomes domain 
(1,1), domain 2 becomes domain (1,2), domain 3 becomes domain (2,1), and finally 
domain 4 becomes domain (2,2). We will use this latter numbering in the remainder of 
our examples. 

We now want to formalize our criteria for sweeping domains monolithically as in Table 3 
above. Note there that in the first two sub-iterations, the upper two domains exchanged 
sweep directions, and the lower two did likewise. Then in the last two sub-iterations, the 
upper two domains swapped the pattern of the first two sub-iterations with the lower two 
domains. This is in fact the only pattern of sweeps which can give the optimal 
performance and illustrates the fact that sweeps directions are exchanged among domains 
according to the inverse order of partitioning. We can alternatively view this as exchange 
first between nearest neighbors on the binary partition tree, then among progressively 
more distant branches on that tree. (We will expand on this topic with more examples in 
the next section.) The second criterion for monolithic sweeping of domains, as we have 
already mentioned in earlier discussion, is to sweep only in one “direction”  per domain 
per sub-iteration, where “direction”  in our terminology means all angles lying in a given 
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octant (or quadrant in 2D). We can now introduce the third and final criterion, which we 
will call the “adjacency”  criterion. This is that domains which share a common boundary 
can have domain coordinates which differ by no more than one in any axis. It guarantees 
that the prerequisite sweeps have already been performed for each domain’s neighbors in 
time for it to perform its own sweeps. In Fig. 5 we contrast decompositions which both 
pass and fail this criterion. In the one on the left adjacent domains have coordinates 
which differ by no more that one in either axis, whereas on the right we have shifted the 
partitions slightly. Now domain (2,1) shares a boundary with domain (1,3), and domain 
(4,2) shares a boundary with domain (3,4). In both cases the second coordinates differ by 
two, violating the adjacency criterion. 

 

  
        (4,1)       (4,2)    (4,3)    (4,4)       (4,1)             (4,2)        (4,3) (4,4) 

   
        (3,1)    (3,2)      (3,3)        (3,4)                       (3,1)     (3,2)     (3,3)        (3,4) 

   

             (2,1)         (2,2)    (2,3)    (2,4)                        (2,1)         (2,2)     (2,3)    (2,4) 

   

      (1,1)   (1,2)      (1,3)           (1,4)                    (1,1) (1,2)        (1,3)            (1,4) 

         passes adjacency criterion                     fails adjacency criterion 

               Figure 5. A comparison of domain adjacency in two decompositions 

Before we go into more detail on sweeps and their relationship to domain partitioning, it 
will be useful to introduce some additional notation. 

5. Representing Sweeps and Sweep Directions 

We will now introduce a numerical notation for sweep directions and introduce three-
dimensional sweeps. Table 5 gives the correspondence. 
 

Sweep 
Direction 

Number of  
Dimensions Interpretation 

0 2  lower left to upper right 
1 2  lower right to upper left 
2 2  upper left to lower right 
3 2  upper right to lower left 
   
0 3  lower left front to upper right back 
1 3  lower right front to upper left back 
2 3  lower left back to upper right front 
3 3  lower right back to upper left front 
4 3  upper left front to lower right back 
5 3  upper right front to lower left back 
6 3  upper left back to lower right front 
7 3  upper right back to lower left front 

                          Table 5. Numerical representation of sweep directions 

We can use the numerical sweep direction values in a schematic representation of sweeps 
in a diagram representing those for 16 domains in a four-by-four two-dimensional 
problem. Fig. 6 shows how we might give a more abstract representation of a problem 
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such as that shown in Fig. 5. We do not assume in Fig. 6 that all the domain boundaries 
necessarily align, but merely want a general representation for all four-by-four problems 
that satisfy our sweep criteria of section 4 above. Ten sub-iterations are represented. 
 
 

          2                   3                           2     3                         3      2               3                    2               

           2                    3                2     3     0     3     2     1 

           0                    1               0     1                    2     1     0     3 

          0              1          0     1                      1      0              1                    0  

          Sub-iteration 1  Sub-iteration 2       Sub-iteration 3              Sub-iteration 4   Sub-iteration 5 
 

                            0     1                   0      1                      1     0     1       0 

          3     0     1     2                         1     0                           1                    0     

          1     2     3     0               3     2           3           2 

                   2                    3                2      3     3     2     3        2 

         Sub-iteration 6                  Sub-iteration 7       Sub-iteration 8              Sub-iteration 9  Sub-iteration 10 

 

Figure 6. Sweep pattern for 16 domains in two dimensions 
 

Referring back to Fig. 5, we can see why the adjacency criterion must hold in order for 
the pattern of Fig. 6 to work. For the set of domains on the right side of Fig. 5 we are 
blocked at sub-iteration 3 from performing the sweep in the 0 direction for domain (2,1). 
This is because domain (1,3) needs to have already been swept in direction 0 (and not 
merely be in the process of being swept as shown in the pattern) for (2,1) to be swept at 
sub-iteration 3. For the set of domains on the left side of Fig. 5, the sweep patterns of Fig. 
6 work properly as expected. 
 
Let us now consider some efficiency issues concerning the sweep patterns of Fig. 6. We 
notice that each domain is swept only four times out of ten sub-iterations for an 
efficiency rate of only 40%. However, we can double the efficiency to 80% by noticing 
that domains separated by two units vertically are never both swept in the same sub-
iteration. So we can perform domain overloading and place these pairs of domains on 
single masters. For example, domains (1,1) and (3,1) are paired together, (2,1) and (4,1) 
are paired together, and so on. Thus master 1 will be busy with domain (1,1) in sub-
iteration 1, domain (3,1) in sub-iteration 3, domain (1,1) again in sub-iteration 4 again, 
and so forth. We will find domain overloading to be essential to achieving maximal 
efficiencies as we move toward higher numbers of domains as well. Note that 100% 
theoretical efficiencies are possible only for four domains in two dimensions and eight 
domains in three dimensions because otherwise (with more domains than sweep 
directions) at least the initial and final sub-iterations must necessarily idle some 
processors. 
 
In order to represent sweep patterns more compactly, we can use a chart form as shown 
in Table 6. It gives the sweep pattern of Fig. 6 both without and with domain 
overloading. 
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Master Domain Sub-iteration Master Domains Sub-iteration 

(without domain overloading) (with domain overloading) 
  1 2 3 4 5 6 7 8 9 10   1 2 3 4 5 6 7 8 9 10 
  Sweep Directions   Sweep Directions 
1 (1,1) 0   1   2   3 1 (1,1),(3,1) 0  2 1 0 3 2 1  3 
2 (1,2)  0 1     2 3  2 (1,2),(3,2)  0 1 2 3 0 1 2 3  
3 (1,3)  1 0     3 2  3 (1,3),(3,3)  1 0 3 2 1 0 3 2  
4 (1,4) 1   0   3   2 4 (1,4),(3,4) 1  3 0 1 2 3 0  2 
5 (2,1)   0  2 1  3   5 (2,1),(4,1) 2  0 3 2 1 0 3  1 
6 (2,2)    0 1 2 3    6 (2,2),(4,2)  2 3 0 1 2 3 0 1  
7 (2,3)    1 0 3 2    7 (2,3),(4,3)  3 2 1 0 3 2 1 0  
8 (2,4)   1  3 0  2   8 (2,4),(4,4) 3  1 2 3 0 1 2  0 
9 (3,1)   2  0 3  1               
10 (3,2)    2 3 0 1                
11 (3,3)    3 2 1 0                
12 (3,4)   3  1 2  0               
13 (4,1) 2   3   0   1             
14 (4,2)  2 3     0 1              
15 (4,3)  3 2     1 0              
16 (4,4) 3   2   1   0             

Table 6. Sweep directions for a 4×4 set of domains 
 

We can use this same technique of overloading for our first three-dimensional example, 
namely, a 4×4×2 array of domains. The problem will consist of two layers, each swept in 
much the same fashion as above. The schematic view of the first sub-iteration is shown in 
Fig. 7, where heavy arrows are used to denote sweep directions.  In addition, some of the 
domains at the corners of the block have been labeled in order to show their numbering 
scheme. The complete set of sweeps is given in numerical notation in Table 7. Note that 
now each domain must be swept eight times instead of four times as in the two-
dimensional examples which preceded this one. This increases the number of sub-
iterations from 10 to 18. We have also shaded the upper left quadrant to highlight where 
the pattern in the upper right of Table 6 has been replicated four times in Table 7. 

 

        (2,4,1)            (2,4,4) 

 

 

            (2,1,1) 

                 (1,4,4) 

 

 

 

            (1,1,1)     (1,1,4) 

 

Figure 7. Schematic view of 32 domains in a 4×4×2 configuration 
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Master Domains Sub-iteration 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
  Sweep Directions 
1 (1,1,1),(1,3,1) 0  2 1 0 3 2 1 4 3 6 5 4 7 6 5  7 
2 (1,1,2),(1,3,2)  0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7  
3 (1,1,3),(1,3,3)  1 0 3 2 1 0 3 2 5 4 7 6 5 4 7 6  
4 (1,1,4),(1,3,4) 1  3 0 1 2 3 0 5 2 7 4 5 6 7 4  6 
5 (1,2,1),(1,4,1) 2  0 3 2 1 0 3 6 1 4 7 6 5 4 7  5 
6 (1,2,2),(1,4,2)  2 3 0 1 2 3 0 1 6 7 4 5 6 7 4 5  
7 (1,2,3),(1,4,3)  3 2 1 0 3 2 1 0 7 6 5 4 7 6 5 4  
8 (1,2,4),(1,4,4) 3  1 2 3 0 1 2 7 0 5 6 7 4 5 6  4 
9 (2,1,1),(2,3,1) 4  6 5 4 7 6 5 0 7 2 1 0 3 2 1  3 
10 (2,1,2),(2,3,2)  4 5 6 7 4 5 6 7 0 1 2 3 0 1 2 3  
11 (2,1,3),(2,3,3)  5 4 7 6 5 4 7 6 1 0 3 2 1 0 3 2  
12 (2,1,4),(2,3,4) 5  7 4 5 6 7 4 1 6 3 0 1 2 3 0  2 
13 (2,2,1),(2,4,1) 6  4 7 6 5 4 7 2 5 0 3 2 1 0 3  1 
14 (2,2,2),(2,4,2)  6 7 4 5 6 7 4 5 2 3 0 1 2 3 0 1  
15 (2,2,3),(2,4,3)  7 6 5 4 7 6 5 4 3 2 1 0 3 2 1 0  
16 (2,2,4),(2,4,4) 7  5 6 7 4 5 6 3 4 1 2 3 0 1 2  0 

 
Table 7. Sweep directions for a 4×4×2 set of domains on 16 masters 

 
We now wish to expand our scheme for domain overloading to larger numbers of 
domains. In order to do this we need to examine more carefully the shaded sweep pattern 
at the left of Table 6. When we compare it to the shaded pattern in Table 7, we can see 
that the upper and lower halves of the former pattern have been merged by overlaying 
one half on top of the other. Furthermore, to the right of the shaded pattern in Table 7 we 
have placed the same pattern (the unshaded cells with italicized numerals) in an 
interlocking fashion with the shaded area. This illustrates an interesting property of the 
pattern that relates to tiling theory, namely, that the shaded pattern of Table 6 can 
completely tile the plane if displaced in (positive or negative) multiples of 8 units in the 
vertical and (positive or negative) multiples of 8 in the horizontal direction. That is, 
copies of the pattern, if treated like the pieces of a jigsaw puzzle, can be placed together 
to cover a planar surface infinitely in all directions. This replication scheme works not 
only for modeling the sweeps of our 16 and 32 domain configurations, as already shown, 
but for overloading higher numbers of domains onto sixteen masters as well. For 
example, in order to place 64 domains on 16 masters we replicate the sweeps of Table 6 
to the right, overlaying the copy of sub-iterations 1 and 2 on sub-iterations 17 and 18, 
respectively, for a new total of 34=2×18-2 sub-iterations. Master 1 would have domains 
{ (1,1,1),(1,3,1),(3,1,1),(3,3,1)}  and master 9 would have { (2,1,1),(2,3,1),(4,1,1),(4,3,1)} , 
for example. We could similarly replicate patterns to go to 128 or 256 domains. 
 
As we move up to 32 domain masters, this strategy is not applicable. Instead, we use 
another tiling property of the shaded pattern of Table 6, namely, that it can also tile the 
plane when displaced in (positive or negative) multiples of 16 units in the vertical and 
(positive or negative) multiples of 4 in the horizontal direction. Replicating in this new 
way, we can overload 64 domains onto 32 masters as shown in Table 8. Note the 
difference in domain overloading between Tables 7 and 8. In the former, domains which 
differ by two in the second coordinate are grouped on a master (i.e., within the sweep 
plane), whereas in the latter they differ by two in the first coordinate (i.e., across two 
sweep planes). 
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Masters Domains Sub-iteration 

   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 
  Sweep Directions 

 1 (1,1,1),(3,1,1) 0   1 4  2 5 0 3 6 1 4 7 2 5  3 6   7 
 2 (1,1,2),(3,1,2)  0 1   4 5 2 3 0 1 6 7 4 5 2 3   6 7  
 3 (1,1,3),(3,1,3)  1 0   5 4 3 2 1 0 7 6 5 4 3 2   7 6  
 4 (1,1,4),(3,1,4) 1   0 5  3 4 1 2 7 0 5 6 3 4  2 7   6 
 5 (1,2,1),(3,2,1)   0  2 1 4 3 6 5 0 7 2 1 4 3 6 5  7   
 6 (1,2,2),(3,2,2)    0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7    
 7 (1,2,3),(3,2,3)    1 0 3 2 5 4 7 6 1 0 3 2 5 4 7 6    
 8 (1,2,4),(3,2,4)   1  3 0 5 2 7 4 1 6 3 0 5 2 7 4  6   
 9 (1,3,1),(3,3,1)   2  0 3 6 1 4 7 2 5 0 3 6 1 4 7  5   
10 (1,3,2),(3,3,2)    2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5    
11 (1,3,3),(3,3,3)    3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4    
12 (1,3,4),(3,3,4)   3  1 2 7 0 5 6 3 4 1 2 7 0 5 6  4   
13 (1,4,1),(3,4,1) 2   3 6   0 7 2 1 4 3 6 5 0 7  1 4   5 
14 (1,4,2),(3,4,2)  2 3   6 7 0 1 2 3 4 5 6 7 0 1   4 5  
15 (1,4,3),(3,4,3)  3 2   7 6 1 0 3 2 5 4 7 6 1 0   5 4  
16 (1,4,4),(3,4,4) 3   2 7  1 6 3 0 5 2 7 4 1 6  0 5   4 
17 (2,1,1),(4,1,1) 4   5 0  6 1 4 7 2 5 0 3 6 1  7 2   3 
18 (2,1,2),(4,1,2)  4 5   0 1 6 7 4 5 2 3 0 1 6 7   2 3  
19 (2,1,3),(4,1,3)  5 4   1 0 7 6 5 4 3 2 1 0 7 6   3 2  
20 (2,1,4),(4,1,4) 5   4 1  7 0 5 6 3 4 1 2 7 0  6 3   2 
21 (2,2,1),(4,2,1)   4  6 5 0 7 2 1 4 3 6 5 0 7 2   3   
22 (2,2,2),(4,2,2)    4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3    
23 (2,2,3),(4,2,3)    5 4 7 6 1 0 3 2 5 4 7 6 1 0 3 2    
24 (2,2,4),(4,2,4)   5  7 4 1 6 3 0 5 2 7 4 1 6 3 0  2   
25 (2,3,1),(4,3,1)   6  4 7 2 5 0 3 6 1 4 7 2 5 0 3  1   
26 (2,3,2),(4,3,2)    6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1    
27 (2,3,3),(4,3,3)    7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0    
28 (2,3,4),(4,3,4)   7  5 6 3 4 1 2 7 0 5 6 3 4 1 2  0   
29 (2,4,1),(4,4,1) 6   7 2  4 3 6 5 0 7 2 1 4 3  5 0   1 
30 (2,4,2),(4,4,2)  6 7   2 3 4 5 6 7 0 1 2 3 4 5   0 1  
31 (2,4,3),(4,4,3)  7 6   3 2 5 4 7 6 1 0 3 2 5 4   1 0  
32 (2,4,4),(4,4,4) 7   6 3  5 2 7 4 1 6 3 0 5 2  4 1   0 

Table 8. Sweep directions for a 4×4×4 set of domains on 32 masters 

As before with 16 masters, we can overload higher numbers of domains onto 32 masters 
as well. For example, in order to place 128 domains on 32 masters we replicate the 
sweeps of Table 8 to the right, overlaying the copy of sub-iterations 1 through 6 on sub-
iterations 17 through 22, respectively, for a new total of 38=2×22-6 sub-iterations. Master 
1 would have domains { (1,1,1),(3,1,1),(5,1,1),(7,1,1)}  and master 17 would have 
{ (2,1,1),(4,1,1),(6,1,1),(8,1,1)} , for example. We can likewise go to 256 domains on 32 
masters by further replication of the table. 

So far we have dealt with a single tile corresponding to 4×4 arrangement of domains, 
replicated in various ways in both two and three dimensions. For larger domain 
configurations considered here we need to consider tiles corresponding to 4×8, 8×8, and 
16×16 configurations (replicated in various ways) in order to generate all the entries in 
Table 9 below. They are basically elaborations of the same scheme as above and so will 
not be shown explicitly here. 
 
6. Efficiency Comparisons for Various Domain Configurations 
 
We can now summarize the various configurations of domains and masters that we 
studied in the previous section. Table 9 contains these results, plus some that were not 



 14 

covered earlier. Again, these are theoretical results assuming perfect load balancing and 
no overhead or communications cost. It is clear from this table that domain overloading is 
preferable whenever we have more than 4 domains in two dimensions or 8 domains in 
three. The asymptotic effect of overloading domains on masters is apparent also in going 
from 1 to 2 to 4 to 8 domains per master on 16 domains (with efficiencies of 80, 89, 94, 
and 97 percent respectively). On 32 masters the same overloading produces efficiencies 
of 57, 73, 84, and 91 percent, respectively. Likewise, for 64 masters we have efficiencies 
of 36, 61, 76, and 86 percent, respectively. This is shown graphically in Fig. 8. 

 
Dimensions Masters Domains Domains per 

Master 
Active 

Sub-iterations 
Total  

Sub-iterations 
Percent 

Efficiency 

2 4 4 1 4 4 100 

2 8 8 1 4 6 67 

2 8 16 2 8 10 80 

2 16 16 1 4 10 40 

 

3 8 8 1 8 8 100 

3 16 16 1 8 10 80 

3 16 32 2 16 18 89 

3 16 64 4 32 34 94 

3 16 128 8 64 66 97 

3 16 256 16 128 130 98 

3 16 512 32 256 258 99 

3 32 32 1 8 14 57 

3 32 64 2 16 22 73 

3 32 128 4 32 38 84 

3 32 256 8 64 70 91 

3 32 512 16 128 134 96 

3 64 64 1 8 22 36 

3 64 128 2 16 26 61 

3 64 256 4 32 42 76 

3 64 512 8 64 74 86 

3 128 512 4 32 50 64 

3 128 1024 8 64 82 78 

3 128 2048 16 128 146 88 

3 128 4096 32 256 274 93 

Table 9. Theoretical efficiency results for various configurations of domains 
 

The important observation to be made from Fig. 8 is that for both 16 and 32 masters we 
can adequately exploit our computational resources by domain overloading (with 
progressively larger numbers of domains). Note that it is the number of masters, rather 
that the number of domains, that determines the degree of parallelism overall, so that all 
data points along a single curve represent the same level. As an example with, say 32 
energy groups, 1024 processors can be used with 32 masters.  Although 64 masters allow 
for somewhat less exploitation of our resources, as can be seen from Table 9 and Fig. 8, 
they permit us to use up to 2048 processors (again with 32 energy groups). The optional 
use of threading increases these figures even more. The last entry in Table 9 corresponds 
to a 16×16×16 decomposition of the problem space into 4096 domains, with 32 domains 
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on each of 128 masters. With 32 energy groups and 4-way threading, we would use 
16384 processors, a capacity to be reached within a few years. 

Maximum theoretical processor usage for various domain configurations
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Figure 8. Graphical rendering of comparisons in Table 9 

 
Actual timing figures for the above configurations agree fairly well with the predicted 
efficiencies, except that there is some degradation of performance with higher numbers of 
domains due to the inevitable overhead and communication costs. Nevertheless, we are 
able to exploit the massively parallel hardware rather well, and scaling studies have 
showed improved overall performance as problems are progressively doubled in size to 
eight times their original size. At 32 masters and 3000 processors we have not yet found 
in practice the point where scaling up a problem becomes counterproductive. Our 
principal limitation at the moment is the availability of computing nodes rather than our 
ability to exploit them effectively.  
 
An example illustrating the effectiveness of domain overloading is given in Table 10 
below. It shows that the theoretical efficiencies of Table 9 for 16 masters are in fact 
achieved in practice. This is an s8 problem with 32 energy groups. It has fourfold 
symmetry about one axis, and thus is a good candidate for good load balancing. We see 
from Table 10 that the product of the time and predicted theoretical efficiency is nearly 
constant as expected, and corresponds to a computation time of approximately 1200 
seconds in the limiting case of 100% efficiency. In problems with no such symmetry, 
perfect load balancing is more difficult to achieve, and we can find that overall times 
remain nearly constant in spite of increasing theoretical efficiency. Moreover, if we 
attempt load balancing with too crude an overall mesh (thus resulting in few choices as to 
where to place partitions during the decomposition phase), then resorting to larger 
numbers of domains can be counterproductive. It follows that the opportunities for finer 
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decomposition (and hence greater parallelism) occur when we model our problems with 
more and finer grids overall. 
 

Number of 
masters 

Number of 
domains 

Time (seconds) Theoretical 
efficiency 

 Efficiency × time 

16 16 1440* .80 1150 
16 32 1330* .89 1184 
16 64 1272* .94 1196 

*  Due to the AMR nature of the code, slight variations in total zone count occurred between runs so these 
times have been normalized to a constant zone count. 

Table 10. Timing study for domain overloading efficiencies. 
 
We can now return to a problem to which we alluded earlier in section (4), namely the 
adjacency criterion as exemplified in Fig. 5. It turns out, occasionally, that our initial 
binary spatial decomposition may result in a configuration which fails that criterion. In 
such cases the question arises as to whether it would be better to abandon the scripting of 
sweeps which we developed in section (5) in favor of the “do everything immediately”  
algorithm illustrated in Table 2, or alternatively to adjust our domain boundaries to fit the 
adjacency criterion at the expense of optimal load balancing. In fact, studies have been 
performed to find out how this trade-off could affect overall performance. The result is 
that satisfying the adjacency criterion is more important than optimizing the balance of 
work among the processors. This is explained immediately below by considering what 
sorts of bottlenecks are imposed by each strategy.  
 
In any load-balancing scheme, it is the processor with the maximum amount of work 
which delays all the other processors. So if we assure that our busiest processors have 
roughly the same amount of work, with a few outliers that may fall well below this range, 
then we can count this nonetheless as a successful decomposition. This is because the 
average amount of work per unit time is the average over all processors, with the outliers 
contributing only slightly to the degradation in overall performance. Thus if we keep the 
adjacency criterion intact by adjusting our domain boundaries so as to create a few 
“underperforming”  domains, then we can achieve nearly optimal performance. On the 
other hand, by abandoning our careful scheduling of sweeps as developed in section (5), 
then we introduce global conflicts as shown in Table 2, which can lead to the idling of 
large numbers of processors. This has been demonstrated in numerous tests which have 
pitted various optimization schemes against each other. 
 
We mentioned earlier that dynamic load balancing could be performed at each iteration in 
case our initial estimate of the load (made before the adaptive mesh refinement step) was 
not optimal. It turns out that this is more important in the case of fewer domains 
(especially 4 in 2D and 8 in 3D). In those cases imbalances are more noticeable because 
we have fewer processors to average out the outliers discussed in the paragraph above. 
For large numbers of domains we reach a point of diminishing returns, and the initial 
domain decompositions turn out to be close to optimal. Attempts to improve on our 
automatic decomposition have verified our basic method in the sense that performing 



 17 

careful decomposition by inspection and human intervention do not achieve any 
significant improvements.  
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